Radioactivité

La radioactivité, terme inventé vers 1898 par Marie Curie, est un phénomène physique naturel au cours duquel des noyaux atomiques instables se désintègrent en dégageant de l'énergie sous forme de rayonnements divers, pour se transformer en...

Définitions :

  • Propriété d'un noyau atomique de se transformer en un autre. (source : florenaud.free)
  • Propriété de certains éléments chimiques dont les noyaux se désintègrent spontanément pour former d'autres éléments en émettant des... (source : irsn)
  • Propriété qu'ont certains atomes d'émettre de l'énergie sous forme de radiations (rayons gamma) ou de particules (ex.... (source : mcq)
Symbole signalant une source de rayons ionisants, ?

La radioactivité, terme inventé vers 1898 par Marie Curie, est un phénomène physique naturel au cours duquel des noyaux atomiques instables se désintègrent en dégageant de l'énergie sous forme de rayonnements divers, pour se transformer en des noyaux atomiques plus stables. Les rayonnements ainsi émis sont appelés, selon le cas, des rayons α, des rayons β ou des rayons γ.

Les radionucléides les plus fréquents dans les roches terrestres sont l'isotope 238 de l'uranium (238U), l'isotope 232 du thorium (232Th), et en particulier l'isotope 40 du potassium (40K) [1]. Outre ces isotopes radioactifs naturels encore assez abondants, il existe dans la nature des isotopes radioactifs en abondances bien plus faibles. Il s'agit surtout des éléments instables produits lors de la suite de désintégrations des isotopes mentionnés, par exemple de divers isotopes du radium et du radon.

Un des radionucléides naturels les plus utilisés par l'homme est l'isotope 235 de l'uranium (235U) qui se trouve dans la nature en faible concentration (<1 %) associé à l'isotope 238U, mais dont on modifie la concentration par des techniques d'enrichissement de l'uranium pour qu'il puisse servir à la production d'énergie nucléaire civile et militaire.

Un autre radionucléide naturel est le radiocarbone, c'est-à-dire l'isotope 14 du carbone (14C). Ce dernier est constamment produit dans la haute atmosphère par des rayons cosmiques interagissant avec l'azote, et se détruit par désintégrations radioactives à peu près au même taux qu'il est produit, de sorte qu'il se produit un équilibre dynamique qui fait que la concentration du 14C reste plus ou moins constante au cours du temps dans l'air et dans les organismes vivants qui respirent cet air. Une fois un organisme mort, la concentration en 14C diminue dans ses tissus, et permet de dater le moment de la mort. Cette datation au radiocarbone est un outil de recherche très prisé en archéologie et permet de dater avec une bonne précision des objets organiques dont l'âge ne dépasse pas cinquante à cent mille ans.


Les rayonnements α, β et γ produits par la radioactivité sont des rayonnements ionisants qui interagissent avec la matière en provoquant une ionisation. L'irradiation d'un organisme entraine des effets qui peuvent être plus ou moins néfastes pour la santé, selon les doses de radiation reçues et le type de rayonnement concerné.

Historique

«Poudre Tho-Radia, à base de radium et thorium, selon la formule du Dr Alfred Curie…»

La radioactivité fut découverte en 1896 par Henri Becquerel (1852-1908), lors de ses travaux sur la phosphorescence : les matières phosphorescentes émettent de la lumière dans le noir après expositions à la lumière, et Becquerel supposait que la lueur qui se produit dans les tubes cathodiques exposés aux rayons X pouvait être liée au phénomène de phosphorescence. Son expérience consistait à sceller une plaque photographique dans du papier noir et mettre ce paquet en contact avec différents matériaux phosphorescents. Tous ses résultats d'expérience furent négatifs, à l'exception de ceux faisant intervenir des sels d'uranium, lesquels impressionnaient la plaque photographique à travers la couche de papier. Cependant, il apparut bientôt que l'impression de l'émulsion photographique n'avait rien à voir avec le phénomène de phosphorescence, car l'impression se faisait même quand l'uranium n'avait pas été exposé à la lumière au préalable. Par ailleurs, tous les composés d'uranium impressionnaient la plaque, y compris les sels d'uranium non phosphorescents et l'uranium métallique. À première vue, ce nouveau rayonnement était semblable au rayonnement X, découvert l'année précédente (en 1895) par le physicien allemand Wilhelm Röntgen (1845-1923). Des études ultérieures menées par Becquerel lui-même, mais aussi par Marie Curie (1867-1934) et Pierre Curie (1859-1906), ou encore par Ernest Rutherford (1871-1937), montraient que la radioactivité est nettement plus complexe que le rayonnement X. En spécifique, ils trouvaient qu'un champ électrique ou magnétique sépare les rayonnements «uraniques» en trois faisceaux différents, qu'ils baptisaient α, β et γ. La direction de la déviation des faisceaux montrait que les particules α étaient chargées positivement, les β négativement, et que les γ étaient neutres. En outre, la magnitude de la déflection indiquait nettement que les particules α étaient bien plus massives que les β.

En faisant passer les rayons α dans un tube à décharge et en étudiant les raies spectrales ainsi produites, on pouvait conclure que le rayonnement α est formé d'hélions, c'est à dire de noyaux d'hélium (4He). D'autres expériences permettaient d'établir que les rayons β sont composés d'électrons comme les particules dans un tube cathodique, et que les γ sont, tout comme les rayons X, des photons très énergétiques. Par la suite, on découvrit que de nombreux autres éléments chimiques ont des isotopes radioactifs. Ainsi, en traitant des tonnes de pechblende, une roche uranifère, Marie Curie réussit à isoler quelques milligrammes de radium dont les propriétés chimiques sont tout à fait semblables à celles du baryum (les deux sont des métaux alcalino-terreux), mais qu'on arrive à distinguer à cause de la radioactivité du radium.

Les dangers de la radioactivité pour la santé ne furent pas immédiatement reconnus. Ainsi, Nikola Tesla (1856-1943), en soumettant volontairement en 1896 ses propres doigts à une irradiation par des rayons X, constata que les effets aigus de cette irradiation étaient des brûlures qu'il attribua, dans une publication, à la présence d'ozone. D'autre part, les effets mutagènes des radiations, surtout les risques de cancer, ne furent découverts qu'en 1927 par Hermann Joseph Muller (1890-1967). Avant que les effets biologiques des radiations ne soient connus, des médecins et des sociétés attribuaient aux matières radioactives des propriétés thérapeutiques : le radium, surtout, était populaire comme tonifiant, et fut prescrit sous forme d'amulettes ou de pastilles. Marie Curie s'est élevée contre cette mode, arguant que les effets des radiations sur le corps n'étaient pas encore bien compris. Durant les années 1930, les nombreuses morts qui ont semblé pouvoir être reliées à l'utilisation de produits contenant du radium ont fait passer cette mode.

Les transformations nucléaires

La désintégration d'un noyau radioactif peut entrainer l'émission de rayonnement α, β- ou β+. Ces désintégrations sont fréquemment accompagnées de l'émission de photons de haute énergie ou rayons gamma, dont les longueurs d'onde sont le plus souvent encore plus courtes que celles des rayons X, étant de l'ordre de 10-9 m ou inférieures. Cette émission gamma (γ) résulte de l'émission de photons lors de transitions nucléaires : du réarrangement des charges internes du noyau nouvellement formé, ou bien de la couche profonde du cortège électronique perturbé, à partir de niveaux d'énergie excités avec des énergies mises en jeu de l'ordre du MeV.

Les transformations isobariques

Une transformation isobarique correspond à la transmutation d'un noyau avec la conservation du nombre de masse A.

Émissions bêta

Icône de détail Article détaillé : Radioactivité β.

L'émission bêta moins
Émission d'une particule bêta moins (électron)

La radioactivité bêta moins (β-) affecte les nucléides X présentant un excès de neutrons. Elle se manifeste par la transformation dans le noyau d'un neutron en proton, le phénomène s'accompagnant de l'émission d'un électron (ou particule bêta moins) et d'un antineutrino électronique ν :

 {}ˆ{A}_{Z}\hbox{X}\;\to\;ˆ{A}_{Z+1}\hbox{Y}+ eˆ- + \bar{\nu}_e

L'émission bêta plus

La radioactivité bêta plus (β+) ne concerne que des nucléides qui présentent un excès de protons. Elle se manifeste par la transformation dans le noyau d'un proton en neutron, le phénomène s'accompagnant de l'émission d'un positon (ou positron, ou encore particule bêta plus) et d'un neutrino électronique ν :

 {}ˆ{A}_{Z}\hbox{X}\;\to\;ˆ{A}_{Z-1}\hbox{Y}+ eˆ+ + {\nu}_e

L'émission d'un rayonnement β+ par un noyau n'est possible que si l'énergie disponible est supérieure à 1,022 MeV (soit la masse de deux électrons). Car le bilan énergétique, qui est la différence entre l'énergie initiale et l'énergie finale donne : Q = (m (X) − m (Y) − memν) C2, où mνC2 est négligeable, puisque de l'ordre de quelques eV

Q = μ (X) C2ZmeC2 − μ (Y) C2 + (Z − 1) meC2meC2, avec μ (X) C2 et μ (Y) C2 les énergies des atomes X et Y

Q = (μ (X) − μ (Y) − 2me) C2=Qβ+ La réaction n'est par conséquent possible que si Q > 0 autrement dit que si (μ (X) − μ (Y) C2 > 2meC2 = 1.022Mev

La capture électronique

Icône de détail Article détaillé : Capture électronique.

La capture électronique (ε) ne concerne que des nucléides qui présentent un excès de protons et dont l'énergie disponible (dans la réaction potentielle) n'est pas nulle.

 {}ˆ{A}_{Z}\hbox{X} + eˆ- \;\to\;ˆ{A}_{Z-1}\hbox{Y} + {\nu}_e

L'émission alpha

émission d'une particule alpha (noyau d'hélium)

On parle[2] de radioactivité alpha (α) pour désigner l'émission d'un noyau d'hélium ou hélion :

 {}ˆ{A}_{Z}\hbox{X}\;\to\;ˆ{A-4}_{Z-2}\hbox{Y}\;+{}ˆ{4}_{2}\hbox{He}

Ces hélions, encore appelés particules alpha, ont une charge 2e, et une masse de 4,001 505 8 unités de masse atomique.

Icône de détail Article détaillé : Radioactivité α.


Loi de désintégration radioactive

Un radionucléide quelconque a tout autant de chances de se désintégrer à un moment donné qu'un autre radionucléide de la même espèce, et la désintégration ne dépend pas des conditions physico-chimiques dans lesquelles le nucléide se trouve. En d'autres termes, la loi de désintégration radioactive est une loi statistique.

Soit N (t) le nombre de radionucléides d'une espèce donnée présents dans un échantillon à un instant t quelconque. Comme la probabilité de désintégration d'un quelconque de ces radionucléides ne dépend pas de la présence des autres radionucléides ni du milieu environnant, le nombre total de désintégrations dN pendant un intervalle de temps dt à l'instant t est proportionnel au nombre de radionucléides de même espèce N présents ainsi qu'à la durée dt de cet intervalle : c'est une loi de décroissance exponentielle. On a en effet :

dN = − λNdt

Le signe moins (–) vient de ce que N diminue au cours du temps, de sorte que la constante λ est positive.

En intégrant l'équation différentielle précédente, on trouve le nombre N (t) de radionucléides présents dans le corps à un instant t quelconque, sachant qu'à un instant donné t = 0 il y en avait N0 :

N (t) = N0e − λt

Icône de détail Article détaillé : décroissance radioactive.

Interaction entre les rayonnements et la matière

En irradiation externe, le rayonnement α est arrêté par une feuille de papier.
Le rayonnement β est arrêté par une feuille d'aluminium.
Le rayonnement γ est arrêté par de grandes épaisseurs de matériaux denses, comme le plomb.


Icône de détail Article détaillé : Rayonnements ionisants.


Les rayonnements ionisants provoquent tous au sein de la matière des ionisations et des excitations. La façon dont se produisent ces ionisations dépend du type de rayonnement reconnu.




Ces mécanismes produiront, in fine, des excitations et ionisations dans le matériau traversé. Le rayonnement gamma a un fort pouvoir de pénétration dans la matière (plusieurs mètres de béton).


La nature des lois physiques servant à calculer les parcours ou l'atténuation des rayonnements dans la matière est changent selon les rayonnements reconnus. Les rayonnements gamma ne sont jamais totalement arrêtés par la matière. C'est pourquoi le flux de photons émergeant d'un écran sera faible, voire quasi indétectable, mais jamais nul. Les lois physiques qui traduisent le parcours des rayonnements alpha et bêta montrent qu'au-delà d'une certaine distance, il est impossible que des particules puissent être retrouvées. Le rayonnement incident peut par conséquent être totalement bloqué par un matériau qui joue le rôle d'écran.

Mesure de radioactivité

Grandeurs objectives

Ces grandeurs objectives sont mesurables avec appareils de physique (compteurs, calorimètres, horloges).


Conversion des différentes unités objectives :

1 Ci = 3,7×1010 Bq
1 Bq = 0,027 nCi

Grandeurs subjectives

Ce sont des grandeurs non mesurables directement. Elles sont estimées à partir de mesures et de cœfficients de pondération définis par la CIPR.


Chiffres à manier avec précaution et pas sourcé :

Le facteur de risque d'induction de cancer est estimé à 4% par Sv pour une population de travailleurs ainsi qu'à 5% par Sv pour la population en général. À titre d'exemple, les personnes vivant en Europe occidentale reçoivent une dose annuelle naturelle de 3 mSv dont la moitié est due au radon. //

Conversion des différentes unités subjectives :

1 rad = 0,01 Gy
1 Gy = 100 rad
1 rem = 0,01 Sv = 10 mSv
1 Sv = 100 rem

Origines de la radioactivité

La radioactivité a essentiellement pour origine les radioisotopes existants dans la nature et produits lors des explosions des supernovas. On trouve des traces de ces éléments radioactifs et de leurs descendants dans notre environnement : un roc de granite contient des traces d'uranium qui, en se désintégrant, émettent du radon.

On parle de «radioactivité naturelle» pour désigner la radioactivité due à des sources non produites par les activités humaines, comme celle issue du radon, ou du rayonnement cosmique. A contrario, on parle de «radioactivité artificielle» pour désigner la radioactivité due à des sources produites par les activités humaines : éléments transuraniens synthétiques, concentrations artificiellement élevées de matières radioactives, production artificielle de rayonnement Gamma (dans un accélérateur de particules par exemple) ou de rayons X (radiographies). Physiquement, il s'agit précisément du même phénomène.


Nature de la source Exposition humaine à la radioactivité selon l'OMS[3] : mSv par personne et par an Radioactivité naturelle en % Radioactivité artificielle en %
Radon (gaz radioactif naturel fréquemment présent dans les rez-de-chaussée) 1,3 42%
Irradiation d'origine médicale (Radiographies, scanners, radiothérapies... ) 0,6 20%
Eléments absorbés par alimentation (principalement du potassium 40 contenu naturellement dans les aliments) 0,5 16%
Rayonnement cosmique 0,4 13%
Rayonnement interne 0,2 6%
Autres origines artificielles sauf énergie nucléaire civile (industries minières diverses, retombées atmosphériques des essais militaires, instruments de mesure, certains procédés industriels tels la radiographie de soudures... ) 0,1 3%
Energie nucléaire civile 0,01 0,3%
Total 3,1 77% 23%


Selon une Etude de Billon S. et Al[4], l'exposition naturelle à la radioactivité représenterait environ 2,5 mSv sur un total de 3,5. Cette dose peut varier de 1 à 40 mSv, selon l'environnement géologique et les matériaux d'habitation. Il y a aussi le rayonnement interne du corps : La radioactivité naturelle des atomes de notre corps se traduit par environ 8 000 désintégrations par seconde (8 000 Bq). Ce taux est essentiellement du à la présence de carbone 14 et de potassium 40 dans notre organisme.

Radioactivité naturelle

Radioactivité tellurique

Le rayonnement tellurique dû aux radionucléides présents dans les roches (uranium, thorium et descendants) est d'environ 0,50 mSv par an en France [5]. Il peut cependant être bien plus important dans certaines régions ou la roche est très concentrée en uranium (régions granitiques comme la Forêt-Noire en Allemagne ou la Bretagne et le Massif central en France) ou en thorium (Région du Kérala en Inde).

Radon

A ce rayonnement s'ajoute la présence d'un gaz radioactif : le radon. Il est responsable à lui seul de la plus grande part de l'exposition humaine moyenne à la radioactivité : 42% du total. Il est issu de la décomposition de l'uranium naturellement contenu dans les sols. Dans les régions où la concentration en uranium dans la roche est élevée, il est fréquemment présent dans les habitations peu ventilées, ou construites sur des sols à fort dégagement de radon (rez-de-chaussée, maisons, caves). Il entraîne dans ce cas une exposition interne conséquente à cause de ces descendants à vie courte (dont fait surtout partie le polonium).

La radioactivité du radon est la seconde source de décès par cancer du poumon en France juste derrière le tabac[6].

Rayons cosmiques

Le vent solaire, et le champ magnétique qu'il entraine dévie une partie des rayons cosmiques "interstellaires" ; Le champ magnétique terrestre (la Ceinture de Van Allen) dévie la majeure partie de ceux approchant la Terre. L'atmosphère n'absorbant qu'une partie de ces particules de haute énergie, une fraction de celle-ci atteint le sol, voire pour les plus énergétiques, traverse les premières couches rocheuses.

La part due au rayonnement cosmique représente environ 0,32 nGy/h[7] au niveau de la mer. Cette valeur varie en fonction de la latitude et de l'altitude, elle double à 1 500 m d'altitude.

Radioactivité artificielle

L'activité humaine est une autre source majeure de rayonnements ionisants. Principalement, pour 20% du total des expositions humaines à la radioactivité, par les activités médicales : production de radionucléides par cyclotron (pour les scintigraphies et TEP par exemple). Le reste, représentant 3% du total des expositions humaines, est produit, par ordre d'importance, par :


Note : L'imagerie médicale au moyen de rayons X produit la plus forte dose d'exposition de l'homme aux rayonnements ionisants. On ne parle cependant pas de radioactivité car les rayons X ne sont pas issus de réactions nucléaires du noyaux mais d'excitation électronique de l'atome

Radioprotection

Risque sanitaire

Nouveau symbole lancé par l'AIEA représentant un danger de mort ou de dommages sérieux.

Une substance radioactive doit être repérée par le symbole ? (Unicode 2622, UTF-8 E2 98 A2).

Les conséquences de la radioactivité sur la santé sont complexes. Le risque pour la santé dépend non seulement de l'intensité du rayonnement et la durée d'exposition, mais également du type de tissu concerné — les organes reproducteurs sont 20 fois plus sensibles que la peau. Les effets sont différents selon le vecteur de la radioactivité :

Les normes mondiales, basées sur les conséquences épidémiologiques de l'explosion des bombes d'Hiroshima et Nagasaki, partent du principe que le risque pour la santé est proportionnel à la dose reçue et que toute dose de rayonnement comporte un risque cancérigène et génétique (CIPR 1990).

La règlementation pour la protection contre les radiations ionisantes est basée sur trois recommandations essentielles :

  1. Justification : on ne doit adopter aucune pratique conduisant à une irradiation à moins qu'elle ne produise un bénéfice suffisant pour les individus exposés ou pour la société, compensant le préjudice lié à cette irradiation.
  2. Optimisation : l'irradiation doit être au niveau le plus bas qu'on peut raisonnablement atteindre.
  3. Limitation de la dose et du risque individuels : aucun individu ne doit recevoir des doses d'irradiation supérieures aux limites maximum autorisées.

De récentes études de l'IRSN ont montrées que les effets de la contamination radioactive chronique, même à des faibles doses, ne sont pas négligeables, et pourraient provoquer différentes pathologies atteignant certaines fonctions physiologiques (système nerveux central, respiration, digestion, reproduction). [1]

Dose radiative

L'environnement naturel émet un rayonnement inférieur 0,00012 mSv∙h-1. L'exposition peut devenir dangereuse à partir de 0,002 mSv∙h-1, selon le temps auquel on y est soumis.

Les doses aujourd'hui tolérées dans les différents secteurs contrôlés des centrales nucléaires françaises sont

Icône de détail Article détaillé : Dose radiative.

Dose équivalente

La dose équivalente est la mesure de dose cumulée d'exposition continue aux radiations ionisantes durant une année, avec des facteurs de pondération. Jusqu'en 1992, les doses équivalentes n'étaient pas mesurées de la même façon en Europe ainsi qu'aux États-Unis ; actuellement ces doses sont standardisées.

La dose cumulée d'une source radioactive artificielle devient dangereuse à partir de 500 mSv (ou 50 rem), dose à laquelle on constate les premiers symptômes d'altération sanguine. En 1992, la dose équivalente maximale (dem) pour une personne travaillant sous rayonnements ionisants était fixée à 15 mSv sur les 12 derniers mois en Europe (CERN et Angleterre) ainsi qu'à 50 mSv sur les 12 derniers mois aux États-Unis. Depuis août 2003, la dem est passée à 20 mSv sur les 12 derniers mois.

Lors d'un scanner médical, le patient reçoit une dose de 0,05 mSv à 15 mSv suivant les organes. Pour éviter tout symptôme d'altération sanguine, on se limite à un maximum de trois examens de ce type par an.

Radioprotection

Icône de détail Article détaillé : Radioprotection.

Irradiation

En France, la réglementation fixe les limites annuelles de radiation à 20 mSv (2 rem) pour les travailleurs ainsi qu'à 1 mSv (0,1 rem) pour la population.

Les facteurs qui protègent des radiations sont :

Certains comportements sont susceptibles d'entrainer une surexposition à la radioactivité : un patient qui effectue 5 radiographies aux rayons X subit une dose d'environ 1 mSv ; les passagers et les pilotes des avions de ligne, et les astronautes en orbite, subissent aussi de l'ordre d'1 mSv lors d'une éruption solaire très intense. S'ils répètent ces voyages ou effectuent des missions de longues durées, une exposition prolongée accroît le risque d'irradiation.

Icône de détail Article détaillé : Irradiation.

Contamination radioactive

En zone contaminée par des poussières radioactives, on se protège par une hygiène très stricte : nettoyage des surfaces de travail, précautions pour éviter de soulever la poussière, tenues de protection

Alimentation

La Communauté européenne a fixé des doses de radioactivité à ne pas dépasser dans les aliments : le lait ne doit pas dépasser 500 Bq/l pour l'iode 131. Dans certains länder allemands, les normes sont bien plus sévères (100 Bq/l en Sarre, 20 Bq/l en Hesse et Hambourg).

Icône de détail Article détaillé : contamination radioactive.

Principaux éléments radioactifs

Voir aussi la Carte des nucléides.

Notes et références

  1. Avant la découverte de la radioactivité, Lord Kelvin avait estimé l'âge de la Terre à quelque vingt millions d'années, en supposant que l'unique source d'énergie capable de s'opposer au refroidissement était la chaleur résiduelle, originellement produite par la formation de la Terre. Un âge de uniquement quelques dizaines de millions d'années fut reconnu énormément trop court par les géologues, et un débat assez virulent s'ensuivit entre la communauté des géologues et celle des physiciens. Celui-ci ne devait prendre fin qu'une vingtaine d'années après la découverte de la radioactivité, trop tard pour Kelvin de faire amende honorable. Plus tard, les physiciens ont pu apporter aux géologues des méthodes de datation absolue des roches qui se basent sur la radioactivité et les abondances actuelles de certains radioéléments et de leurs produits de désintégration (cf. radiochronologie).
  2. J. P. Sarmant (1988). Dictionnaire Hachette de Physique, Hachette, Paris. ISBN 2-01-007597-8
  3. Jean-Marc Jancovici : A propos de quelques objections fréquentes sur le nucléaire civil
  4. "French population exposure to radon, terrestrial gamma and cosmics ray", Billon S. et Al, Radiation Protection Dosimetry, 2005, Vol 113 n°3
  5. "French population exposure to radon, terrestrial gamma and cosmics ray", Billon S. et Al, Radiation Protection Dosimetry, 2005, Vol 113 n°3
  6. O Catelinois, Rogel A, Laurier D et al.,  «Lung Cancer Attributable to Indoor Radon Exposure in France : Impact of the Risk Models and Uncertainty Analysis», dans Environmental Health Perspectives, National Institute of Environmental Health Science, vol.  114, no 9, May 2006, p.  1361–1366 [texte intégral texte sur PMID lien DOI (pages consultées le 2007-08-10) ].
  7. UNSCEAR 2000

Voir aussi

Liens externes


Recherche sur Google Images :



"La radioactivité naturelle provient ..."

L'image ci-contre est extraite du site www.mesure-radioactivite.fr

Il est possible que cette image soit réduite par rapport à l'originale. Elle est peut-être protégée par des droits d'auteur.

Voir l'image en taille réelle (315 x 565 - 16 ko - gif)

Refaire la recherche sur Google Images

Recherche sur Amazone (livres) :

Chercher sur Amazone Refaire la recherche


Ce texte est issu de l'encyclopédie Wikipedia. Vous pouvez consulter sa version originale dans cette encyclopédie à l'adresse http://fr.wikipedia.org/wiki/Radioactivit%C3%A9.
Voir la liste des contributeurs.
La version présentée ici à été extraite depuis cette source le 13/11/2008.
Ce texte est disponible sous les termes de la licence de documentation libre GNU (GFDL).
La liste des définitions proposées en tête de page est une sélection parmi les résultats obtenus à l'aide de la commande "define:" de Google.
Cette page fait partie du projet Wikibis.
Accueil Recherche Aller au contenuDébut page
ContactContact ImprimerImprimer liens d'évitement et raccourcis clavierAccessibilité
Aller au menu